
LIFT- The LIsp Framework for Testing

Gary King
Computer Science Department, LGRC

University of Massachusetts, Box 34610
Amherst, MA 01003-4610

gwking@cs.umass.edu
(413) 577-0669

Abstract
A sometimes overlooked value of software testing is that it enables fearless
programming and constant refactoring. Since the design is often the first
causuality of sitting down to code, having a complete test suite improves
productively and allows for rapid change and experimentation. This report
describes LIFT: the LIsp Framework for Testing. LIFT supports the con-
struction of a hierarchical suite of tests that can be run in batch (for regres-
sion testing) or interactively (which suits the style of Lisp). The philosophy,
design and use of LIFT are discussed and LIFT is compared with several
other Lisp testing frameworks.

1 Introduction

A system with a complete test suite is a system that can be modified fearlessly.
Because Lisp is so fluid and adept at rapid reshaping, it is more important than
ever that Lisp projects have a complete test suite. However, Lisp’s interactive
nature encourages building tests piecemeal. While this allows for easy bottom
up testing, it makes it hard to test the system as a whole. The following de-
scribes a method of building tests in Lisp that merges Lisp’s interactive nature
with complete regression testing. It is (very) loosely based on the Beck Testing
Framework[Beck1999] and the JUnit Java testing framework developed by Kent
Beck and Eric Gamma[Beck2000b]. The goal of all these frameworks is to pro-
vide a means of developing regression tests that:

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2001 2. REPORT TYPE

3. DATES COVERED
 00-00-2001 to 00-00-2001

4. TITLE AND SUBTITLE
LIFT - The LIsp Framework for Testing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Massachusetts,Department of Computer
Science,Amherst,MA,01002

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

14

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1. can be built simply and quickly

2. encourages a code-a-little / test-a-little style of coding

3. can be run often

These tests help ensure that code is correct and, more importantly, allow develop-
ers the confidence to refactor and make changes because they know that they can
verify the system easily.

The remainder of this document will first discuss the testing methodology in
greater detail. Then we will outline the LIFT commands and their use and com-
pare LIFT with other testing frameworks. Finally, we will cover some techniques
that we have found to be helpful in our testing. One point to emphasize immedi-
ately is that LIFT is meant to add value to Lisp testing without adding (too much)
work. Typically, a Lisp programmer will test her code by peppering it with:

#+Test
(assert (= 72 (factorial 6))
#+Test
(assert (= 1 (factorial 1))

In LIFT, this would look like:

(deftest test-factorial () ()
(:tests
((ensure (= 720 (factorial 6))))
((ensure (= 1 (factorial 1))))))

Or, assuming that we’ve already defined the test suite:

(addtest (ensure (= 72 (factorial 6))))
(addtest (ensure (= 1 (factorial 1))))

Both deftest and addtest run any test-cases they define immediately so that
the normal interactive Lisp style is upheld and supported. However, LIFT also
provides the ability to run all of the test-cases non-interactively for complete unit
and system testing.

2

2 Testing Methodology

It is no secret that testing is both important and neglected. The most common
argument against testing is that it takes too much time and is too difficult. One
answer to this is that, properly structured, testing is both easy and time saving.
Furthermore, a system with a proper suite of tests can be radically refactored with
confidence–the tests provide assurance that all remains well. For testing to work,
it’s important that tests be easy to build and that the coding of the system proceeds
in parallel with the coding of the tests. This style makes it easier to write code
because the code is easily verified. It also makes it easier to write tests because
the writing of the code makes it clearer exactly what should be tested.

2.1 Testing Terminology

The Lisp Testing framework is built mainly around three macros (deftest,
addtest and ensure) and a few methods used to run the tests. Before we
describe these, however, it would be helpful to introduce some terminology:

test-case The smallest unit of testing. A test-case should prove one thing about a
function, class, system or module.

fixture Each test-case operates within an environment provided by its fixture. The
fixture is the code that prepares the environment for the test and that resets
the environment after the test. Fixtures can be shared by many test-cases.

test-suite A test-suite is a hierarchical collection of test-cases and other test-
suites. In LIFT, each test-suite in the hierarchy provides its own fixture.

error Tests can fail in two ways, a test error is the case when something com-
pletely unexpected occurs–for example, a system (or coding) error. These
sorts of errors are tracked separately from test failures.

failure A test fails when the code being tested does not behave as expected. For
example, the value returned by a function is not correct or a form that ought
to produce a warning does not.

2.2 An Introduction to LIFT

In LIFT, test-suites are built around CLOS classes. The class provides a place
to put slots necessary for the tests, methods to setup and tear-down the fixture

3

required for the tests in the suite and methods to run each test. The class hierarchy
provides a natural way to group collections of test-cases and suites into larger
collections of test-cases.

An example should make this clearer and give another view of LIFT syntax.
The code below is a small portion of the tests developed for the Common Lisp
Container Library (CLCL):

;;; ---
;;; container tests
;;; ---

(deftest test-containers)

;;; ---
;;; binary-search-tree
;;; ---

(deftest test-binary-search-tree (test-containers)
((b (make-container ’binary-search-tree)))
(:setup (empty! b))
(:tests
(ensure (empty-p b))
((insert-item b 2)
(ensure (not (empty-p b))))))

(addtest
(insert-item b 2)
(insert-item b 3)
(delete-item b 2)
(ensure-equal (size b) 1)))

The deftest macro creates a test-suite1 and, optionally, the code required for
test setup, test tear-down and the actual test-cases. Addtest adds a single new
test-case to the most recently defined test-suite. The code above creates two test-
suites (one for each deftest) and three test-cases (two from the deftest and
one from the addtest). Since test-containers is a superclass of test-

1Actually, it creates a class which, for our purposes, is synonymous with the test-suite.

4

binary-search-tree, it “contains” all of its test-cases.2 We can run the
test-cases for binary-search-tree by evaluating:

(run-tests ’test-binary-search-tree)

We can run all of the container system’s test-cases by evaluating (run-tests
’test-containers). In either case, LIFT will report the total number of
test-cases run and the number of failures and errors. If there are any problems,
LIFT will provide a detailed report that makes it easy to see which tests need to
be examined.

3 Macros, Functions and Variables

3.1 Macro addtest

Addtest is used to add another test to an existing test-suite. Its syntax is as follows:

(addtest
[(test-class-name)]
[name]
[(:documentation <string>)]
form*)

The test-class-name specifies the test-class to which the new test is added. If it is
not specified, the new test will be added to the most recently defined test-class (i.e.,
the test-class created by the most recent evaluation of deftest or addtest).
The name, documentation and form function as they do in deftest. For
example:

;; This adds a new (unnamed) test-case to the
;; utilities test-suite.
(addtest (utilities)
(ensure (equal (filter #’oddp ’(1 2 3)) ’(1 3))))

;; the ensure-warning form marks a test as failed if
;; a warning is NOT generated. This test-case is
;; named ’negative-factorials’

2Test-containers will also contain any test-cases from its other subclasses.

5

(addtest negative-factorials
(ensure-warning (factorial -2)))

;; This is perhaps the simplest test form. It
;; creates an unnamed test. Ensure-equal compares
;; the results of the first form with the
;; (unevaluated) values of the rest of the
;; forms (see below for details)
(addtest (ensure-equal (factorial 0) 1))

3.2 Macro deftest

Deftest is an extended version of the defclass macro. As all of its parameters are
optional, it does the best job it can parsing whatever it is given. The syntax is as
follows:

(deftest test-suite-name
[({supertest-name}*)]
[({slot-specification}*)]
[{test-clauses}*])

3.2.1 Supertest-names

Each supertest-name must have already been defined with deftest. The superclass
test-mixin is added automatically to every test-class defined with deftest.
Test-mixin provides the framework around which LIFT is built.

3.2.2 Slot specifications

Each slot-specifications consists of either a bare symbol or a list of the name of
the slot, its initial value (or the keyword :unbound), and a symbol containing the
letters I, R and A corresponding to :initarg, :reader and :accessor. Regular CLOS
slot specification can also be used. The IAR symbol controls the generation of
initarg, reader and accessor methods whose names will be the same as the slot
name. For example:

(deftest foo (super-foo)
((slot-1 :unbound ir)
(slot-2 34 a :type ’fixnum)

6

slot-3))

Would expand into a class definition similar to:

(defclass foo (super-foo)
((slot-1

:initarg :slot-1
:reader slot-1)

(slot-2
:initform 34
:accessor slot-2
:type ’fixnum)

slot-3))

3.2.3 Test clauses

The test-clauses can be one of:

:setup Used to specify code that will be run automatically before each test-case is
executed. Setup code returns the test-environment to a known state. :Setup
may only be specified once. Note that any initforms specified in the test-
case slot definitions will automatically be made part of the test-case setup.3

:teardown Used to specify any code that should be run after each test-case is
executed. For example, it might be prudent to close any files or free any
resources. :Teardown may only be specified once.

:test The next form specifies a single test-case. :Test can be repeated as many
times as desired.

:tests The next form is treated as a list of test-cases.

:documentation As in defclass, this clause stores documentation for the class
being defined.

Each individual test-case has the following form:

([name] [(:documentation <string>)] form*)

3They are placed in a :before method.

7

The name is optional. If specified, it will be used to identify the test-case when
reporting. The documentation string is also optional and is also used in reporting.
When the test-case is run, the forms are evaluated as in progn. Typically, each
test case will have one (or more) calls to the ensure macro (or one of its vari-
ants). Note that test slot-variables are available (as if with with-slots) within
the body of all code generated with deftest. Here are some examples:

;; Setup a new testing superclass (for organization)
;; (note that we need specify neither superclasses
;; nor slots)
(deftest utilities)

;; this test class will be in the utilities test-suite,
;; is named ‘required-slots’ and has one slot named s.
;; We can use the slot in the test-case by naming
;; it (as in with-slots).
(deftest parse-slots (utilities)
((s (make-slot ’required)))
(:test (required-slots (ensure (slot-required-p s)))))

;; This test class makes sure to close the
;; stream at the end of each test
(deftest file-tests (utilities)
((stream))
(:setup (setf stream (open ...)))
(:teardown (when (stream-open-p stream)

(close stream))))

3.3 Macro ensure

Within a test-case, ensure is used to a assert that a given predicate holds true.
If it does not, a test-failure will be logged for the test. All of the ensure macros
can be used within the test environment or stand alone. In the former case, failures
will be logged; in the latter, they will be reported interactively.

8

3.4 Macro ensure-error

You can use the ensure-error macro to verify that a particular form does
indeed generate an error. Its syntax is:

(ensure-error &body body)

If the body does generate an error, the test succeeds. If it does not generate an
error, then a test-failure will be logged. Here are some examples:

(addtest (examples)
(ensure-error (warn "This test fails because a warning
is not an error.")))

(addtest (examples)
(:documentation "This test will be logged as a
failure because no error will be generated.")
(ensure-warning (= 2 2)))

(addtest (examples)
(:documentation "This test succeeds!")
(ensure-error (let ((x 0)) (print (/ 4 x)))))

3.5 Macro ensure-equal

The ensure-equal macro makes it convenient to ensure that a form returns
the values you expect. Its syntax is:

(ensure-equal form value* &key (test #’equal))

It compares the (possibly multiple) value(s) returned by form to the values speci-
fied after the form using the test you specify. Here are some examples:

(addtest (utilities)
(:documentation "Testing ensure-equal, should pass.")
(ensure-equal (values "1" "2" "3") "1" "2" "3"

:test #’string-equal))

(addtest (utilities)
(:documentation "Testing ensure-equal, should fail")
(ensure-equal (values "1" "2" "3") "1" "2" "3"

:test #’eql))

9

3.6 Macro ensure-warning

You can use the ensure-warning macro to verify that a particular form does
indeed generate a warning. Its syntax is:

(ensure-warning &body body)

If the body does generate a warning, the test succeeds. If it does not generate a
warning, then a test-failure will be logged. Here are some examples:

(addtest (examples)
(ensure-warning (warn "This test succeeds.")))

(addtest (examples)
(:documentation "This test will be logged as a
failure because no warning will be generated.")
(ensure-warning (= 2 2)))

3.7 Macro undeftest

This macro lets you removed a previously defined test. This can be helpful during
interactive use if a test contains syntax errors or other problems. The syntax of
undeftest is:

(undeftest [(test-class)] [test-name])

Both the test-class and the test-name parameters are optional. If they are
unspecified, then the most recently defined test will be removed. If you specify
only one parameter, then undeftest will assume that it is the test-name.

3.8 Function print-test-result

This function prints the results of testing. Its syntax is:

(print-test-result &optional stream test-result)

The stream parameter defaults to *standard-output*. The test-result parameter
defaults to the most recently created test-result (from run-tests). If the ver-
bose? option is used in run-tests, then print-test-result will be
called automatically at the end of testing.

10

3.9 Function run-test

Run-test runs a particular test case.

3.10 Function run-tests

Run-tests runs all of the test-cases that have been defined for a test-class. By
default, it will also run all of the test-cases for all sub-test-classes of a test-class.
It has the following syntax:

(run-tests &key
suite verbose? break-on-errors?
do-subclasses? result)

The keywords are as follows:

suite This is the name (as a symbol) of the test-suite that you want to test. If you
do not specity it, then it defaults to the most recently used (in deftest or
addtest) test-class.

verbose? If verbose? is true, then the details of the test results will be printed
after all of the test-cases have been run. It defaults to the value of *test-
verbose?*.

break-on-errors? If this is true, then Lisp will go into the debugger if an error
occurs while the test-cases are being run. If it is false, then errors will be
logged and can be reported at the end of testing. break-on-errors?
defaults to the values of *test-break-on-errors?*.

do-subclasses? When true, all of the test-cases in the subclasses of the test-suite
will be run. This defaults to true.

result This should be a variable of type test-result into which the results of
testing will be logged. If not specified, a new test-result will be created to
hold the results.

3.11 Variable *test-break-on-errors?*

When *test-break-on-errors?* is true, the default behavior of run-testswill be
to enter the debugger whenever an error is encountered during testing. This vari-
able can be overriden by specifying a value for break-on-errors? when evaluating
run-tests.

11

3.12 Variable *test-print-length*

test-print-length controls how test code is displayed when reporting errors and
failures. It functions exactly like *print-length*.

3.13 Variable *test-print-level*

test-print-level controls how test code is displayed when reporting errors and
failures. It functions exactly like *print-level*.

3.14 Variable *test-result*

This variable contains the summary information from the most recently evaluated
run-tests. It is set by run-tests and used by print-test-result.

3.15 Variable *test-verbose?*

When *test-verbose?* is true, LIFT will be more informative about its activities
during test creation and test evaluation. This variable can be overriden by speci-
fying a value for verbose? when evaluating run-tests.

4 Comparisons

The most common Lisp testing technique is direct interaction with the Listener
combined with a liberal sprinkling of #+Test’s in the code. Although this
method has the benefit of immediate feedback, it lacks support for automated
regression testing. Furthermore, since all testing is done in the same environment,
the results of tests may come to depend on one another. Although using LIFT is
not quite as simple as this direct style of testing (for example, you must specify
what you expect the results to be instead of just looking at the output), it is almost
as interactive, builds regression tests at the same time and provides each test case
with a clean environment in which to run via fixtures.

The RT (Regression Test) package from MIT [RT1990] and the test framework
available from Franz for Allegro Common Lisp [Franz2001] share many similar-
ities. Both provide some support for interactive testing and the ability to combine
tests for regression testing. Missing from both are LIFT’s ability to structure tests
into a hierarchy of test-suites and, more importantly, the ability to factor out setup

12

and teardown routines into fixtures. This factoring allows common code to be
reused and lets each test-case run in a clean environment.

5 Summary: Using LIFT

LIFT provides a framework for testing with enough flexibility that it can adapt to
most environments. The following is a list of some guidelines that seem reason-
able to us.

• If you have more than one test-suite (created by deftest, then specify the
test-class-name in addtest. Since addtest creates a test for the most
recently used test-class, you may find yourself adding tests into the wrong
class otherwise.

• Write tests and code in parallel. The best time to write a test is probably
before you write the code because that’s when you are thinking most about
what the code ought to do.

• Run your test suite often and correct failures as you find them. LIFT makes
it easy to run all of your tests so that you can make sure that your most
recent changes have not broken anything. This allows you to program with
greater confidence.

LIFT provides a testing framework for Lisp that both supports traditional inter-
active testing and builds a suite of automated regression tests. LIFT is structured
around a few simple commands making it easy to learn and easy to use.

6 Acknowledgments

Thanks go to David Westbrook and Brent Heeringa who provided valuable sug-
gestions and commentary on LIFT and the LIFT documentation. This research
is supported by DARPA contract DASG60-99-C-0074 and DARPA/AFOSR con-
tract F49620-97-1-0485. The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any copyright no-
tation hereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or en-
dorsements either expressed or implied, of the DARPA or the U.S. Government.

13

References

[Beck1999] Kent Beck. Simple smalltalk testing: With patterns. 1999.

[Beck2000b] Kent Beck and Erich Gamma. Test infected:programmers love writ-
ing tests. 2000.

[Franz2001] Inc. Franz. A test harness for allegro cl. 2001.

[RT1990] Massachusetts Institute of Technology. Rt: Common lisp regression
tester. 1990.

14

